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The investigation of stability of plasma string in a longitudinal magnetic
field which 1s perilodically changing in the directlan of the axis of symmet-
ry, 1s of interest because a single element of periodicity of such a system
represents a trap with magnetic constrictions. The most dangerous pertur-
bations are those which weakly distort the magnetic field, the so chklled flu-
ted instabilitles [1 to 3]. Using the method of kinetic equations, Rosen-
bluth and others in (4] examined the effect of stabilization of fluted in-
stabilitles which arise for sufficiently large magnitudes of the Larmor
radius of ions. The problem of plasma stabllity in a longitudinal magnetic
field alternating along the axis of the system was solved in [4] in an ap-
proximate manner by replacing the destabilizing effect which 1s related to
the curvature of magnetlc lines of force (arching away from the plasma) by
a corresponding gravitational effect. Roberts and Taylor in [5] and Rudakov
in [6] demonstrated that the stabillizing effect of Rosenbluth and others in
[4] can be derived from a system of magnetohydrodynamlic equations if terms
which characterize the influence of the filnlte magnitude of Larmor radius

of ions are taken into account in the viscous tension tensor. This "magne-
tic viscosity" remains in the absence of collisions, it does not lead to a
dissipation of energy.

In the present work the stability problem 1s examined by the method of
normal oscillations on the basis magnetohydrodynamic equations taking into
account "magnetic viscosity". It 1s assumed that the plasma pressure is
small compared to the magnetic pressure and the only perturbations examir.ed
are ?hose which do not dlstort the magnetlc field in the first approxima-
tion).

In sections 1 to 4 the stability is investigated for infinitely small Lar-
mor radius where the plasma behavior can be described by mean of a system
of equations for a one-fluid conducting medium. In sections 1 and 2 it is
shown that the problem reduces to solving a common second order dlfferential
equation in which the coefficlents are average values taken along a magnetlc
line of force. For a complete determination of these coefficients it 1s
necessary to find the solution of one more differential equation (for a
given distribution of the magnetic field in the steady state). In section
3 the stability of a plasma string 1s examined the diameter of which is much
smaller than the length of one element of periodicity. In section 4 the
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stabllity 1s investigated with respect to fluted instabilities which slowly
groy with t%me. Results obtained in sections 3 and 4 agree with conclusions
in{l to 3 ].

Section 5 is devoted to an investigation of plasma stability with uniform
cross-sectional temperatures of lons_and electrons taking into account ef-
fects due to large magnitude of Larmor radius of lons. It 1s assumed that
the curvature of lines of the magnetic force is a minor parameter. The solu-
tions for the problem are expressed Iin well known functions for the distri-
bution of density and pressure which decay exponentially with distance from
the axis of symmetry. It 1s shown that stabilization of fluted instabili-
tles 1s possible (with the exception of some perturbations m = 1). Results
of calculations are in agreement with approximate computations in [4].

1. Basic squations for the case of small Larmor radius of ions. The
system of magnetohydrodynamic equations which describe the behavlor of an
ideally conducting one-fluid medium in a magnetic field H has the form

dv 1 d o
= = rot (v x H), divH=20 (1.2)
ij .
] 5?— +-divpv = 0 (1.3)
— (pp™) =0, v = const (1.4)

Here v is the velocity, p the pressure, and p the denslty of the medium.
For the equilibrium case we let v = O, H = H (r), then from(1.1) and (1.2)
we obtaln

Vp = ngH x rot H, divH=0 (1.5)

We will now examine the stability of this state with respect to pertur-
bations which have a time dependence of the form exp(iwt). The quantities
obtained 1n the perturbed state will be

p + p*. e+ p*, H 4+ H*, v* = o,

where the asterisk indlcates perturbations. The linearized system {(1.1) to
(1.%) has the form

H x rot H* = K {1.6)

H* = rot (§ X H), divH* =0 (1.7
p* = — pdivE — E-Vp, p* = —rpdivi —§.Vp (1.8)
K = 4npe? — 4nVp* — H* x rot H (1.9)

For the condition 8ﬂ3)<§§1f2Equation {1.6) can be reduced to a simpl: form
[2]. If forceless configurations are not examined then 1t follows from (1.5)
that irét H| ~ 4np/r,H, where r, is the characteristic dimension.
In Equation {1.6) the member on the left hand side is 7°/p times greater
than iK[, therefore it 1is necessary to assume as a first approximation

H x rot H* = 0 (1.10)

Now, in the left hand side of (1.6) there is an undetermined quantity and
1t must be eliminated. In other words, here terms of the subsequent order
with respect to the small parameter p/ﬁz are essential and it 1s necessary
to utilize the condition of solvability of (1.6) [2]. Fron scalar multipli-

cation of (1.6) by H we obtain
H-K =0 (1.11)
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Further we find

rot H* =G +oH, G =7 KxH (1.12)

a(r) is an arbitrary single-valued function of the coordinates. By applylng
the operation div to first Equation in (1.12), we obtain

div (F558) = H-Va (1.13)

Let s ©be the arc length of some force line in the unperturbed magnetic
field H. Multiplying (1.13) by ds/# and intergrating with respect to s, we
obtain on the right hand side the difference in the values of a over the
limits of integration. We will examine configurations with closed magnetic
lines of force or configurations which have periodically repetitive form and
perturbations with the same perlod. Then along the entire line of force or
along one element of perlodlcity the lntegral

<§> div (H;;K)ds =0 (1.14)

By a somewhat different method this Equation was derived by Kadomtsev in
[2] for the case where the perturbation of the magnetic fleld is small. The
system of equatlons for the stability problem, as follows from (1.7) to
(1.11) and (1.14), has the form

H* = rot (E x H), H x rot H* = 0 (1.15)
o*pH.8 + H-V(ypdivE + E.Vp) — H*.Vp =0 (1.16)
(§)711-div {g—zx[msz +V (ypdiv E +E-Vp) — = H*xTot H]} ds =0 (1.17)

2. Plasma in an extended magnetic field which 1s varying along the axis
of symmetry. In cylindrical coordinates 7, @ and Z let the equilibrium mag-
netic fileld be symmetrical wilth respect to the axis and let the field not
have a ¢ component, It 1s possible to introduce such a function y that

. 1. .
H = rot (i, ‘rJ’_) =~ LigxVP,  [ie|=1, @roe=0  (21)

Siice H.V§ = (0, the lines of force lie on surfaces with § =rconst,
where 2§ 1s equal to the flow within the surfaceip =const. We introduce
curvilinear orthogonal coordinates Z; =1V, &y = @, I3= ¥; an element of
volume is equal to Jdpdgdy, for Lame coefficients we obtain [3]

1
hy= -5, ho=r, hy=JH (2.2)

In the transformatlion from cylindrical to curvilinear coordinates follow-

ing Formulas can be used

3r ar dz 0z
ov oy T avay

=+ VT Y - st @9
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1 {ror\2 dz \2\|'/: 1
e = o) + og) T = w1 (2.3)
For the subsequent presentation we assume that the field is periodic along

with the period 27. Withlin one element of periodicity 2z and also A vary
from — 7 to 7. Equilibrium Equation (1.5) leads to relationship [3]

» _ o I 1 AJH?
' v ind T8y

We will also assume that density p 1s a function of one variable w.

(2.4)

Now we will examine the problem of stability assuming that plasma behavior
can be described by a system of equations of one-fluid approximation (1.1)
to (1.4). 1Introducing the notation

X = rHE, ¥ ="%, Ik (2.5)

we obtain from Equations (1.15)

t JY

r oY
VT Oy H* = —

imd oy Hy* = _H( y T Y) (2'6)

ay

b b (5 ) =0, SR [o  r )

It is assumed here that § = &, (, ) €¥"®. In the following text we
omit the factor eim®

H*

We will 1limit ourselves to a ctudy of instabilities for which the pertur
bation of the magnetic field H* = 0.

dX
X = X (%), Y=—355 (2.7)
Equations (2.6) are satisfled. It follows from the equality {(1.16,
2InJ
. oax G & ) + o JHES = — ,—dy%’ib‘ (Z=8 W 1) X) (2.8

We willl examine perturbations which are periodic with respect to y with
a period 27. The function § will be periodic with the same perlod. This
circumstance permits the determination of arbitrary constants in the Inte-
gration of (2.8).

After substitution of Expressions (2.5), (2.7) and (2.8), Equation (1.17)
takes the form

(1)2 (1 (l} 2 / J /1 (’)/ \
L "l'd<J> 0 S0 In 70.9\})\,:70

ap Ty T VPN oy S

Here

!
1 Ads 1 ¢ ¢
<A>=J'm'§'7ﬁ':"Z‘SlAdx (210)
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Functions ¥ and J in Equations (2.8) and (2.9) must satisfy the condition
of equilibrium {2.4). When 8:11',p < H? , g and g differ only slightly from
the corresponding distribution in the absence of a conducting medium. Since
this difference is already taken into account in Equations(2.8) and (2.9),
it 1is necessary to assume that ¥ and J are the same as for the forceless
configuration

4 2
g VHY = 0 2.11)

We will determine the boundary conditions for X (1[:),taking into account
that the plasma string occupies the volume O {1 ¢, Wheny = Othe func-
tion X ('q))must be bounded. If at ==Y, the plasma string attaches to the

wall, then
(X)y=4, = 0 (2.12)

For a plasma string in vacuum the boundary condition , which follows from
the continuity of total pressure on the perturbed surface of the plasma
string, can be obtained directly from Equation (2.9}. Let the density p and
the pressure p change sharply from some finite values to O in a thin bounda-
ry layer P, — & <P <, The thickness of this layer is considered to
ve small (8 <€ ¢,), nevertheless we assume that the condition of applicabi-
lity for the magbetohydrodynamic approximation is not disturbed. In this.
layer dX / dip changes strongly while X (})is nearly constant. Functions J
and g and their derivatives with respect to Y in view of (2.9) will be as-
sumed quantities in the layer. Integrating (2.10) we obtain

( for Py — O TP <o)

W% dX | d
{;{z“ GOF I X}w-;%_s: 0 (2.13)

Here the constant of integration is taken equal to zero since outside
the layer p = 0 and p = 0. The problem has been reduced to finding those w
for which solutions (2.8) and (2.9) exist such, that (2.12) or (2.13) and
the condition of finlte y at zero are satisfied. For unstable oscillatlions
w® < 0,

3. Stability of a thin plasma string. We wlll examline the equilibrium
configuration for which the characteristic diameter of the plasma string 2r,
1s much smaller than the length of one element of periodicity 27. The lon-
giltudinal magnetic field will be almost homogeneous and the function y(r)
will be approximately proportional to r®. We will look for a solution cf
(2.3) and (2.11) in series form with respect to increments of the minor para-
meter r,%/1%®. Writing formally

r=Veb® -+ +...1 =% — b () + ...

we obtain from (2.3) and (2.11)

= bV —Ygp (2 + b)), z=y — Yypbb’ 3.1)
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H =202 (1 4 Ygpbb’), T = U2 (1 —pbb")
PH =29 [1 — Y (b — b))

Here Pb'% ~ r? [, I? 1s the minor parameter. Terms of the order P®'4 are
discarded. Primes designate differentlation with respect to Y.

(3.2)

We will substitute expansions (3.1) and (3.2) into Equations (2.9) and
(2.10). It is evident from (2.9) that the function S is of the order »*b’.
Therefore the term with 35/3y can be omitted in Eguation (2.10). As a re-
sult we obtain

d X . 2
vag (v Gp) — o fr — s ap) X =0 3.3

Corresponding to (2.13), the boundary condition in the case of a plasma

string 1n a vacuum will be

dX | 3m%bW'? _
{P\P dp + ¥ by PX}Q)::,'JO—-—S =0 (3.4)

In case of homogeneous distribution of temperature over the cross section
when p (p)is proportional top (}), a solution exists for (3.3) and (3.4)

25’2
X = const p'm, 0= — (i;%l;_;_p, m>0 (3.5)

The equation for w® can be presented using average values for r, ¥ and
the radius of curvature » of a magnetic force line

__ 2mp (§ Z;—i775)

In the case of an extended thin plasma string the integral which contains

(3.6)

l
dy,
S rRIL (R ~

£ is negative and Formula (3.6) corresponds to an unstable solution. This
result is in qualitative agreement with conclusions in [1 and 4] in which
fluted instabilities were investlgated in analogy with instabilitiles of
other systems.

In the case where the density 1is constant over the cross section of the
plasma string (p = const, p = const for Y {YP,and p=10, ¢ = 0 for P >, )
solution x(¢) in (3.5) will be a complete and bounded at zero solution of
(3.3), and besides, w® for the single unstable solution will be determined
by Formula (3.5) (possible instabilities which arise in a detalled examina-
tion of the structure of the boundary layer of the plasma string are not
taken into account). For other types of distributions of p(ﬂﬁ other unsta-
ble osclllations can be distinguished. Some such solutions will be presen-
ted below.

4, Slowly developing instabilitles. The substitution

rp oT

§=— JThaag (4.1)
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brings the system {2.9) and {(2.10) to the form

xp 8 [ 1 T _ dln(.f)
?ﬁ(m@) FotlT — (JT> gineh | o a\p (4.2)
d dX p <2ty /a7 I\
W{("”>Pw}+ mz{J f(‘p)'*‘TP\W(T'— (J))
p<r2Hz>}X =0 (4°3)
1 dap dlu <>
7 () = WW[W +1p *‘g‘p——] (4.4)

We will look for solution of these Equatlons which corresponds to instabi-
lities with small increments {(for w®- 0). In Equation {4.3) «® will be minor
parameter for the major derivetive, Therefore, for this Equation strongly
oscillating solutions are possible which can be satisfled by any boundary
conditlion. For simplicity we assume that the surface y = y, 1s a wall and
that boundary condition (2.12) is applicable.

Assuming that X = U/ Vp {r*J>, we will reduce (4.3} to such a form
that the terms which characterize both singularities (for small w and small
¥) are separated

2 3
T o 10— T +eW}U =0 (4.5)

Here g(%) 1s function which 1s finite for w = O. Utilizing results from
the previous section it 1s possible to show that for small § functlons fand
¢ are proportlonal to 1/¥, so that (4.5) is related to the type of equations
for which the theory of asymptotic solutions (for w - 0) is worked out [7].
If r(§) 1s not close to zero then solution (4.5) which is finite at zero

will be U= (5% )-‘feV [";—Zn(ap)] (4.6)
U]
nw = (VI @), V@ =Tm+ 0V @/ (>0

In the region of ¢ close to §,, the function V (sc) is proportional to
2V z— 2 mn — 4'n), from condition (U)y=g, = 0 we therefore
obtain 2V m¥e tn, = mng, N, = 1 (), where ¢ is a large integer. For a
different boundary condition g will not be an integer so that there 1s
always solution¥*

o 2V s im (m=0) (4.7)

ng
The condition for stability (w® > 0) will be n, > 0 or

f (bo) > (4.8)

* To determine the minimum value of parameter ¢ 1t is necessary to perform
a numerical integration of (4.3) for given boundary conditions.
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which coincides with the known criterion of stability obtained in [1 to 3]
if one takes into account that
1
Jy = S H ds
-
In the presence of zeros of the function s(y) in the interval O < < Vg
an Investigation of stabllity can also be easlly carried out, Let for exam-

ple 7(y) < O for O < § < ¢, and fF{§) < O for §, < § < y,, at the same time
F(py) ::0,(df/dﬂﬂ¢=¢‘qk(l In the region of y not close to zero,

FO) = —) /¥ b — ), f*(0) 50,

and here the asymptotic solutlon can be presented in the form [7]

d; /e 2/ 3
U= () €W ot Ll 4 C [0

Lp) = [37 S Vde]%, W= Vaig, (% x/) (4.9)

The constants ¢, must be determined from the condition of continuity with
solution (4.6) in %he region O < § > y,, where both solutions are correct
simultaneously and where asymptotic formulas can be used for the functions
v and W,. Taking into account that in the reglon y§;, < §y < y, 1t 1s neces-
sary to use different asymptotic formulas for Wy (%) (vecause of change in
sign of independent variable = in thils region) substitution of the obtained
result into boundary condition £2.12) leads again to Formula (4.7), in which
m = n(y,) just replaces ny = n(ys). Thus, fluted instabilities arise in
the case when the function y(y) 1s negative at least for some interval of
values of §. These results are in agreement with conclusions in [1to 3].

A formula analogous to [4.7] for the case of fluted instabllities in a
plasma which is located in crossed magnetic and gravitational fields, was
obtained in [8].

5. 8tabilization of fluted instabilities for sufficlently large magnitude
of Larmor radius of ions. We will examine the stability of a thin plasma
string for the case where Larmor radius of lons g, 1s so large that

al ell
]
O~ 50 0= 3 (5.1)

Here ¥ and e are respectively the mass and the charge of the ion, and w,
is the ecyclotron frequency of ions (®@; :§>1(0|). For condition (5.1) stabili-

zation of fluted instabilities 1s possible [4]. Magnetohydrodynamic Equa-
tions have the form [9 and 6]

1 .
p%—:—Vp——ZEHXI‘OLH——dIV(ﬂ +- =5) (5.2)
oH _ H g o = nM .
3¢ = rot {v xH — o Vp]} (p],: n].]’l‘j) (5.3)
% + divpv =0 (5.4)

dT' . . Tp 2]
nj—dt’——i—('r—— 1) p; divv - div m#(ﬂxVT,—)}—-—-O (5.9)

where n, = n. 1s the concentration of charged particles, T, 1s the lonic
temperature; k11 %~ 7S is the tensor of viscous forces related to the tensor
W (Wi, = 0vi [ Oyx + 00k [ Oyi — (¥5) ik div v, y; are Cartesian coordinates,
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the yy~axls 1s along the magnetic fleld) [9] by Equations

Ty = — Mgy = — pvWy,, Ny = Ty = Yy pv (Wy — Wy)
Ty = Ty = — 2pvWy,, Ty = Tigy = 2 pvWy, (5.6)
115 = S = — pveyt; (Wi + W), M35 = — 2pve;t; Wi,
1 T, (5.7
e g2y
VET U= gu

Here aik i1s the unit tensor; 1, 1s the time of ion scattering on ions.
Components of tensors % and %S which are not written out are equal to zero.
The magnetic fleld is assimed to be so strong that the parameter uyt,:§> 1_
Formula (5.7) determines the viscosity of the plasma which depends on col~
lisions between particles while the tensor (5.6) characterizes the effect
of the finite magnitude of the Larmcr radius of ions. The system of equa-
tions {5.2) to {5.5) must still be supplemented by an eguation of state of
the electron gas.

In the derivation of {5.3) Ohm's law is used in the form [ 9]
E:—L{vxﬁmi[ifp,-%—pdi -}—div(ﬂ—{-—ﬁs)]} (5.8)
¢ 0;p dt

The term with div n leads to insignificant corrections {5], the inertial
term for the condition ®; > |®| is also small. In Equation (5.3) only the
pressure term 1s taken intc account (p; ~ pajf®, pj* ~ pit /1y,  which
is comparable to TyPw; v*).

We note that in arbitrary curvilinear orthogonal coordinates &y, Zyand Zg
following Formulas are appropriate [ 10]

1 00; 16y, 1 o, oh, S v, dlnk, g
= Ky R _k . e ___k_dvv
Wi =3 5 Tk gz, iy (”1 5z, T Uk 8xi) + 204 {qz':l h, oz, 3 }
3
_ 1 1 8 hihaheh dnk,
(div =) = 5 E{hlhzhs azy ( By k) T Tag, Tk (5.9)
k=1

Here h, 1s the Lame coefficlent, v, are the orthogonal projections of
velocity.

We will examine the stability of the equilibrium state described in sec~-
tion 2 with the additlional assumptions that the temperature of ions and
electrons is homogeneous over the cross section of the plasma string and
that the length of an element of periodicity 27 is much greater than the
characterlstic dliameter of the plasma string 2r,.

For condition 8nmp <€ H? we obtain (1.10) as a first approximation from
(5.2). This equation is satisfied if the magnetic fileld remains unperturbed.
Exactly such perturbations are the most dangerous ones and can lead to flu~
ted instabilities. From linearized Equation (5.3) for H* = O we obtain
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dX 2mvHT . *d ln n;
X=X —_ . -y
Here X, Y and Z are determined by Formulas (2.5). Writing Equation (5.5)

for perturbed values and taking into account (5.10) we find
T 2myvH on,J .
- =div §
r—17; onJ 3%
dlnJ o 1 9Z  2mvHT;*dIn n (5.11)
oy AT TatTer, @

div§ = —/——

If the order of the function Z(y,x) 1s the same as for v = O, then the
following will hold
dlnJ X ~ 1__az ~b2X ~ rozX
oy J a2 l’-\p
1.e. the perturbation of ion temperature is small and div & 1is close to zero.
With an accuracy to corrections of the order r,?/1° we obtain
dX n.*
Y — — — , P'* = p; 2
J J
day n;
Consequently, for perturbatlions which do not distort the magnetic fileld

and for the condition 7y2 <€ I?, we obtain again Equations(2.8) which also
which also turn out to be applicable even for v ,4 0. Substantlally new ef-
fects can only be expected because the additional term div (1\', + ns) enters

into the equations of motion.

Due to the fact that the ionic temperature remains unperturbed in the
first approximation and the energy exchange between electrons takes place
faster than between ions, the perturbation of temperature 7, + I, will be
insignificant and p* will be proportional to p*. This means that Equation
(1.4) 1s applicable for y = 1, otherwise the dependence on y 1is not evident
in the examined approximation (see Equation (3.3) section 3).

Thus the basic Equations take the form (1.16) and (1.17) to which terms
containing div (%4 75)* must be added and into which Equation (2.8) must be
substituted. From Formulas (5.9) we find

. dX X
— (W * W oo¥) = y —_——
( 11 22 )-—l(ﬂ(Z d‘!’ lp )
20 (d2X | m2X ' oHZ X
S ¥ — _ ¥l Wo* ~ —— ~ ——
Wip* = m (d\pz 42 )’ Wi 2 ro rolll
oX . wvpX
* ot Wae* ~Wiag* ~ 577, (div =)x* ~ Trotll

(div m)* = 2 {d"ﬂ (492 jwf m?X)] — m% (2%——%—)}

(div m)o* = 2O Lo (29 55 — X)] — e (%5 + T}
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Here for' an order of magnitude estimate of the function 5{y,x) the equa-
tion was utilized which 1is obtained from the 2z-th component of Equation of
motion (5.2); for this purpose it was assumed that the parameter w7y 1s of
the order of one. For condition |@T;rg?/{?|{<& 1 components (iliv %5)y* and
(div ®=%),* are small and instead of (1.17) the following holds:

1 (.. [i . . 1 . TS
i {le [% (0°pE — divs?®) J - V(T])dlvgf{—g-V[))'I'OL %—}ds -0

From this we obtain the equation for x(y) (terms containing Z(y,x) do not
enter into this equation for a first approximation)

w [ d dX mp’ dp -
o Law (o) — " X G X — 512
20vH dp dX 1 d% m® dp
— w0 ) — 2w X R Ay X} =0
!
o 3bry g\ dy
¢ = by ‘—Qlt’ﬁ) Sl rRH?

Equation (5.12) can be written in the form

2 d ln p mip
(0¥ — 2movil S50 >{‘p 7y (e dtp) % X}—
d?]
— 2movHyte S0P ‘jfp + mp (Q & 4 L jfp‘;) X=0 (5.13)
(vil = ch /2e = const)

For a plasma string in vacuum the boundary condition can be obtalned by
integrating (5.12), however it 1s necessary to take now into account that in
the layer P, — & <Y < Pyonly the derivative dp/dy can change sharply but
not p(y). The region in which p(y)changes sharply must be related to the
internal region. The boundary condltlon is written in the form

X
(\pW - “2*)¢=¢.—s =

For perturbations with m = 1 solution (3.5) satisfies Equation (5.12) and
condition (5.14) for any arbitrary P (y). Consequently, these perturbations
remain unstable also for large values of Larmor radil of lons. This conclu-
sion was obtained in (4] in which the specific case of density distribution
was examined "

p = ;o p = p’er¥, P°, p°y A = const (5.15)

Let us examlne the problem of stability for the distribution (5.15).
Solution (5.13) is presented by means of degenerate hypergeometric function

(5.14)

X = const-y"™ F (A, m + 1, M) (5.16)
m2p~1pQ — movHA
4= 2 + 0? 4 2movHA (m=>0)

It will be required that for large values of Ay the function X(¢) be boun-
ded. This condition leads, as was shown in [11], approximately to the same
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equality which is the prerequisite for non-exponential growth of perturba-

tions for large xy. We obtain 4 & —n, forn = 0, 1, 2, ... or (5 17)
0 _ 1 RN 22Q
mo — VH (1 m - 2n )i{{VHK (1 m + 2n )] _ (m—i—Zn)p}

The stabllity conditlon for the most dangerous perturbations with »n = 0
will be
13\ 2pQ
REI S I (5.19)

Formulas (5.17) and (5.18) are in qualitative agreement with approximate
calculations in [4]. The parameter x in these calculations can be represen-
ted by the quantity ¢, which characterlzes the diameter of the plasma string
(M4 ~ 1)}. The guantities vH == ¢T;/ 2¢ = const and p/p = const.

In conclusion, we will examine the stabllity with respect to slowly in-
creasing instabilitles which were investigated in section 4. Reducing Egqua-
tion (5.13) to the form (4.5) we see that instead of the term f/w® which
characterizes the behavior of solutions for w ~ O, there 1is now p{(y) where

l)(W)-— VYp (0 — 2mavHd Inp / dP) d§

It is assumed here that wvy/§, in accordance with condition {(5.1) is of
the order of w® and w® 1s so small that @ <& p/p.

Instead of (4 7) we obtain dispersion Equation

) dy =~ ngq, g>|m| (m = 0) (5.19)

For an order of magnitude estimate we take the expresslon under the

::g/c

integral silgn outside of the integral for some Intermedlate value of §
Then we obtain

© dinp dlnp) Po?Q d_p]‘/: 5.90
= St | (o T wpee ay (5-20)
Here dp/dy 1s negative, therefore for v = O Formula {5.20) describes an
unstable sblution.

The criterion for stability wlll be

2

(it Lo — WL g>iml o) (62D
Since, as far as the order of magnitude 1s concerned, the increment of

slowly increasing instabilities is ¢ times (g :§> 1) smaller than the incre-

ment of instability given by Formula (3.6), the stability criverion (5.21)

is less severe than (5.18). For the examined perturbations stabllization

of instabillities with m= 1 is also possible.
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