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The investigation of stability of plasma string in a longitudinal magnetic 
field which is periodically changing In the dinect!.on of the axis of symmet- 
ry, is of Interest because a single element of perlodlclty of such a system 
represents a trap with magnetic constrictions; The most dangerous pertur- 
bations are those which weakly distort the magnetic field, the so called flu- 
ted Instabilities [l to j]. Using the method of Mnetic equations, Rosen- 
bluth and others In [4] examined the effect of stabilization of fluted ln- 
stabilities which arise for sufficiently large magnitudes of the Larmor 
radius of Ions. The problem of plasma stability In a longitudinal magnetic 
field alternating along the axis of the system was solved In [4] In an ap- 
proximate manner by replacing the destabilizing effect which Is related to 
the curvature of magnetic lines of force (arching away from the plasma) by 
a corresponding gravitational effect. Roberts and Taylor in [5] and Rudakov 
In [6] demonstrated thatthe stabilizing effect of Rosenbluth and others in 
[4] can be derived from a system of magnetohydrodynamic equations if terms 
which characterize the influence of the finite magnitude of Larmor radius 
of Ions are taken Into account In the viscous tension tensor. This "magne- 
tic viscosity" remains In the absence of collisions, it does not lead to a 
dissipation of energy. 

In the present work the stability problem Is examined by the method of 
normal oscillations on the basis magnetohydrodynamlc equations taking into 
account "magnetic viscosity". It Is assumed that the plasma pressure is 
small compared to the magnetic pressure and the on1 perturbations examined 
are those which do not distort the magnetic field 9 In the first approxima- 
tion). 

In sections 1 to 4 the stability is investigated for Infinitely small Lar- 
mor radius where the plasma behavior can be described by mean of a system 
of equations for a one-fluid conducting medium. In sections 1 and 2 it Is 
shown that the problem reduces to solving a common second order differential 
equation In which the coefficients are average values taken along a magnetic 
line of Force. For a complete determlnatlon of these coefficients It Is 
necessary to find the solution of one more differential equation (for a 
given distribution of the magnetic field In the steady state). In section 
3 the stability of a plasma string is examined the diameter of which Is much 
smaller than the length of one element of periodlclty. In section 4 the 
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stability is investigated with respect to fluted instabilities which slowly 
grow with time. 
in Cl to 3 1. 

Results obtained in sections 3 and 4 agree with conclusions 

Section 5 is devoted to an investigation of plasma stabilitywithuniform 
cross-sectional temperatures of lons_and electrons taking Into account ef- 
fects due to large magnitude ofLarmor radius of ions. It is assumed that 
the curvature of lines of the magnetic force is a minor parameter. The solu- 
tions for the problem are expressed in well known functions for the distri- 
bution of density and pressure which decay exponentially with distance from 
the axis of symmetry. It Is shown that stabilization of fluted lnstabili- 
ties is possible (with the exception of some perturbations m = 1). Results 
of calculations are in agreement with approximate computations in [4]. 

1. Basio rqu4tion8 for the o&8& of mall LWAOF rullum of ionr. The 

system of magnetohydrodynamic equations which describe the behavior of an 

ideally conducting one-fluidimedlum in a magnetic field H has the form 
dv d 3 

Px= aH 
-VV~--_~H x rot H, -=&+vv.v 

divd;I=O 
(f.1) 

--rot (vxH), 
at 

g + div pv = 0 
(1.4 

-g (PP-'I= 0, 

(1.3) 

r = const (1.4) 
Here v is the velocity, p the pressure, and p the density of the medium. 

For the equilibrium case we let v = 0, H = H (r), then from (1.1) and (1.2) 

we obtain 

Vp = -&H x rot H, div H = 0 (1.5) 

We will now examine the stability of this state with respect to PertUs'- 

bations which have a time dependence of the form exp($utt). 

obtained In the perturbed state will be 

p + p*, p + p*, H + H*, v* = ioj, 

The quantities 

where the asterisk indicates perturbations. The linearized 

(1.4) has the form 

H x rot H* = K 

H* = rot (t x II), div H* = 0 

p* = - p div E - E- Vp, p* = - rp div t 

K = 4npd~ - 4nVp* - H* x rot H 

For the condition8~p~~'Equat~on (1.6) can be reduced 

system (1.1) to 

(1.6) 

(4.7) 
- p*vp (1.8) 

(1.9) 
to a simple: form 

[2]. If f,orceless configurations are not examined then it follows from (1.5) 

that / rot H 1 - 4npl r,,H, where rO Is the characteristic dimension. 
In Equation (1.6) the member on the left hand side is .?/p times greater 

than [KI, therefore it is necessary to assume as a first approximation 

H x rot II* = 0 (1.10) 

Now, in the left hand side of (1.6) there is an undetermined quantity and 

it must be eliminated. In other words, here terms of the subsequent order 

wlth respect to the small parameter p/2 are essential and it is necessary 

to utilize the condition of solvability of (1.6) [2]. From scalar multipll- 

cation of (1.6) by H we obtain 
H*K = 0 (1.11) 
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Further we find 

rot, H* = G + aH, G=$KxH (1.12) 

a(r) Is an arbitrary single-valued function of the coordinates. By applying 
the operation dlv to first Equation In (1.12), we obtain 

div (T) = H-Vu (1.13) 

Let .s be the arc length of some force line In the unperturbed magnetic 

field H. Multiplying (1.13) by ds/ff and Intergrating with respect to s, we 

obtain on the right hand side the difference In the values of (I over the 

limits of Integration. We will examine configurations with closed magnetic 

lines of force or configurations which have periodically repetitive form and 

perturbations with the same period. Then along the entire line of force or 

along one element of perlodlclty the integral 

$ kdiv (F)ds= 0 (1.14) 

By a somewhat different method this Equation was derived by Kadomtsev In 

[2] for the case where the perturbation of the magnetic field Is small. The 

system of equations for the stability problem, as follows from (1.7) to 

(1.11) and (1.14), has the form 

H* = rot (5 x H), H x rot H? = 0 (1.15) 

03pH.{ + H .V(yp div g + ~-VP) - H**Vp = 0 (1.16) 

~~idiv{~x[02p{+V(ypdivC+~*VP)-& H*xrotHI}ds=O (1.17) 

2. Plrrmm In an rxtrnded iqnrtlo field nhloh lr varying along the rxia 
of rymmetry . In cylindrical coordinates r,cp and Z let the equilibrium mag- 

netic field be symmetrical with respect to the axis and let the field not 

have a cp component. It Is possible to Introduce such a function + that 

= - Li,xV$, Ii,1 = 1, (S)r=o= 0 (2.1) 

Slice H.&J = 0, the lines of force lie on surfaces with* =,const, 

where %C$ls equal to the flow within the surface+ =const. 

curvilinear orthogonal coordinates X1 = 9, X2 = cp, Xs= x; 

volume IS equal to Jd$dqdx, f or Lame coefficients we obtain 

h,= & h, = r, h, = JH 

We introduce 

an element of 

[ 31. 

(2.21 

In the transformation from cylindrical to curvilinear coordinates follow- 

ing Formulas can be used 
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(2.3) 

For the subsequent presentation we assume that the field is periodic along 

with the period 21. Within one element of periodicity Z and also x vary 

from - 1 to 1. Equilibrium Equation (1.5) leads to relationship [3] 

aP _o ____-- aP 1 aJIiz 

ax ’ w 4nJ a$ 
(2.4) 

We will also assume that density p is a function of one variable q. 

Now we will examine the problem of stability assuming that plasma behavior 

can be described by a system of equations of one-fluid approximation (1.1) 

to (1.4). Introducing the notation 

(2.5) 

we obtain from Equations (1.15) 

It is assumed here that 5 = &I, (I$, x) ei"'+. In the 

omit the factor eimp 

We will limit ourselves to a study of instabilities 

bation of the magnetic field H* = 0. 

x = x (I&), yz-“‘X- 
4’ 

Equations (2.6) are satisfied. It follows from the equality (1.161 

following text we 

for which the pertur 

(2.7) 

We will examine perturbations which are periodic with respect to x with 

a period 21. The function S will be periodic with the same period. This 

circumstance permits the determination of arbitrary constants in the inte- 

gration of (2.8). 

After substitution of Expressions (2.5), (2.7) and (2.8), Equation (1.17) 

takes the form 

Here 

(2.10) 
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Functions H and J In Equations (2.8) and (2.9) must satisfy the condition 

of equilibrium (2.4). When 8s~ <( H2, fj and J differ only slightly from 

the corresponding distribution in the absence of a conducting medium. Since 

this difference Is already taken Into account In Equations(2.8) and (2.9), 

it is necessary to assume that H and J are the same as for the forceless 

configuration 

$(JP)= 0 (2.11) 

We will determine the boundary conditions for X ($j,taklng into account 
that the plasma string occupies the volume 0 \<%# \<qo. When* = &he func- 

tion X ($) must be bounded. If at* = 9s the plasma string attaches to the 

wall, then 

w,=, = 0 (2.12) 

For a plasma string in vacuum the boundary condition , which follows from 
the continuity of total pressure on the perturbed surface of the plasma 

string, *can be obtained directly from Equation (2.9). Let the density p and 

the pressure _r change sharply from some finite values to 0 in a thin bounda- 

ry layer $s -S,<$<% The thickness of this layer Is considered to 

be small (6 <$s), nevertheless we assume that the,conditlon of appllcabl- 

lity for the ~g~etohydrodyna~c approximation is not disturbed. In this. 

layer dX/@changes strongly while X($)I.S nearly constant. Functions J 

and H and their derivatives with respect to '$ In view of (2.9) will be as- 

sumed quantities in the layer. Integrating (2.10) we obtain 

(for %-~<11,<%) 

(2.13) 

Here the constant of integration is taken equal to zero Since outside 

the layer p = 0 and p = 0. The problem has been reduced to finding those UJ 

for which solutions (2.8) and (2.9) exist such, that (2.12) or (2.13) and 

the condition of finite x at zero are satisfied. For unstable oscillations 

US2 < 0. 

3. Strbfllty of 8 thin pl&lrM string. We will examine the equilibrium 

configuration for which the characteristic diameter of the plasma string 2~ 

is much smaller than the length of one element of periodicity 21. The lon- 

gitudinal magnetic field will be almost homogeneous and the function 4(r) 

will be approximately proportional to ?. We will look for a solution cf 

(2.3) and (2.11) in series form with respect to increments of the minor para- 

meter roa/la. Writing formally 

t=JJq B(X) -t$b,(X) +. . * I, z-x-*b,(X)+... 

we obtain from (2.3) and (2.11) 

r = bV/g I1 - */** (U2 + bb")], z=x - ‘l,qbb’ (3.1) 
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H = 26-2 (1 -j- v&bon)) J =: l!&? (1 - jh!I”) 

r2H = 29 [I - ‘/dqI (b’2 - bb”) I 
(3.2) 

Here $bf2 - r2 /tl’ is the minor parameter. Terms of the order $‘bf4 are 

discarded. Primes designate differentiation with respect to II. 

We will substitute expansions (3.1) and (3.2) into Equations (2.9) and 

(2.10). It is evident from (2.9) that the function S is of the order ~?b'. 

Therefore the term with &S/ax can be omitted in Equation (2.10). As a re- 

sult we obtain 

(3.3) 

Corresponding to (2.l3), the boundary condition in the case of a plasma 

string in a vacuum will be 

P9 
dX qy + (3.4) 

In case of homogeneous distribution of temperature over the cross section 

whenp($)is proportional top ($), a solution exists for (3.3) and (3.4) 

The equation for u? can be presented using average values for r, H and 

the radius of curvature R of a magnetic force line 

(35) 

In the case of an extended thin plasma string the integral which contains 

R is negative and Formula (3.6) corresponds to an unstable solution. This 

result is in qualitative agreement with conclusions in [l and 41 in which 

fluted instabilities were investigated in analogy with instabilities of 

other systems. 

In the case where the density is constant over the cross section of the 

plasma string (p = const, p = const for 9 \(&,and p = 0, c = 0 for I$ >$c) 

solution x(t) in (3.5) will be a complete and bounded at zero solution of 

(,3.3) , and besides, ~1' for the single unstable solution will be determined 

by Formula (3.5) (possible instabilities which arise in a detailed examina- 

tion of the structure of the boundary layer of the plasma String are not 

taken into account). For other types of distributions of p($) other unsta- 

ble oscillations can be distinguished. Some such solutions will be presen- 

ted below. 

4. Slowly drvrloplng lnrt~bilitl~~. The substitution 

(4.1) 
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brings the system (2.9) and (2.10) to the form 

P$._(&~) +~~JT-$$-(JT)=-J'++&- 

~{.(r2~)~~}+nz~{~f(~)+r~~~(T -s)>- 

-p(-&J}x=o 

fW = 

(4.2) 

(4.3) 

(4.4) 

We will look for solution of these Equations which correspondsto instabi- 

lities with small increments (foru?-0). In Equation (‘1.3) ura will be minor 

parameter for the major deriwtive. Therefore, for this Equation strongly 

oscillating solutions are possible which can be satisfied by any boundary 

condition. For simplicity we assume that the surface JI = &, Is a wall and 

that boundary condition (2.12) is applicable. 

Assuming that X = U f t/p (PJ), we will reduce (4.3) to such a form 

that the terms which characterize both singularities (for small u) and small 

$) are separated 

(4.5) 

Here g(o) Is function which Is finite for ut = 0. Vtilizing results from 

the previous section it is possible to show that for small $ functions Jsnd 

0 are proportional to l/#, so that (4.5) is related to the type of equations 

for which the theory of-asymptotic solutions (for UJ - 0) is worked out [7]. 

If f(r) Is not close to zero then solution (4.5) which is finite at zero 

will be 
U= 

* 

In the region of ) close to 

(2 t/l: - 2-1 n2n - 4-k), from condition (u)+,, = 0 we therefore 
_- 

obtain 2 l/&o-s~,~~q, y. = q ($,),where g is a large Integer. For a 

dlfferent boundary condition q will not be an Integer so that there Is 

always solution* 

NrlClO) (4.7) 

(4.6) 

V(x) = r (m + w-&n(2fi) (,pn > 0) 

4 0) the function v(2) is proportional to 

The condition for stability (e" > 0) will be ?&, > 0 or 

f&J > 0 (4.8) 

* To determine the minimum value of parameter p it is necessary to perform 
a numerical integration of (4.3) for given boundary conditions. 
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which coincides with the known criterion of stability obtained in [l to 31 

if one takes into account that 

(J) = \ If-I ds 

-1 

In the presence of zeros of the function f($) 
an investigation of stability can also be easily 

in the interval 0 < J < co 

Pie J'(t) < 0 for 0 < $ < $I and f(q) i 0 for $I 
carried out. Let for exam- 

f (&) = 0, (df I d$)+=+, # 0. In the region of ) not 
< $ < Jl09 at the same time 
close to zero, 

f (44 = (9 - 111) I* (9 - %I, I* c-v # 0, 

and here the asymptotic solution can be presented In the form [7] 
d< -‘I2 

u= -$ 
1 ) v, w+ 1 @-+a 5 ($) 1 + c _M’_ [ o-“8 5 (I$) 1) 

5 (lb)= [F { vid$r, (4.9) 
1, 

JI’, (4 = 1/a**,, f az2’z 
( i 

The constants C must be determined from the condition of continuitywith 
solution (4.6) In %he region 0 < $ > JIM, where both solutions are correct 
simultaneously and where asymptotic formulas can be used for the functions 
V and W,. Taking into account that in the region $I < $ < q0 It is neces- 
sary to use different asymptotic formulas for W*(z) (because of change In 
sign of independent variable x In this region) substitution of the obtained 
result Into boundary condition 

t 
2.12) leads again to Formula (4.7), inwhich 

rll = n($,) just replaces Q = rl J1,). Thus, fluted lnstabllltles arise in 
the case when the function f()) Is negative at least for some Interval of 
values of I. These results are in agreement with conclusions In [lto 
A formula analogous to [4.7] for the case of fluted instabilities In a 

31. 

plasma whichls located In crossed magnetic and gravitational fields, was 
obtained in [8]. 

5. Strblllcrtlon of fluted lnrtrbilitlrr for ruff~olently large nmgnltwlr 
of Lumor radlue of lonr, We will examine the stability of a thin plasma 

string for the case where Larmor radius of Ions a, is so large that 

njs et1 
O- ,,r(J% Oj = Mc (5.1) 

Here M and e are respectively the mass and the charge of the ion, and UI~ 

is thecyclotron frequency of ions (oj>\ 61 I). For condition (5.1) stabili- 

zation of fluted instabilities Is possible C41. Magnetohydrodynamic Equa- 

tions have the form [9 and 6] 

p$i=-Vp-~& H x rot H - div (?F $- ?cs) (5.2) 

aH 
-==ot{vxH-+‘Vpj} (&$, at (5.3) 

-$ + div pv == 0 (5.4) 

nj % + (r - 1) pj div v -;- div 
{ 

F1-(HxVl.j)~~() 
ojM If (5.5) 

where n, = ne IS the concentration of charged particles, T, 1s the Ionic 

temperature,' n+- 1~s is the tensor of viscous forces related to the tensor 

w(Wik = avi / &J~ + dv,, / api - (s/s) 6ik div v, 3% are Cartesian coordinat=s, 
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the ?~a-axis is along the magnetic field) [g] by Equations 

5c 11 = - a$, = - PAM/;,, n,, = rc‘J1 = ‘I, PY w*, - W22) 

q3 = 3C3t = - 2PYWw n 23 = nsz = 2 PYWI, (5.6) 

3clp = n& = - PW% (WI, + W22)r 7133’ = - 2fXXOjZjW~J 

1 Ti v zzx $- aj*wj = - (5.7) 
&y%!f 

Here & is the unit tensor; 75 is the time of ion scattering on ions. 

Components of tensors SC and xg which are not written out are equal to zero. 

The magnetic field is ass.med to be so strong that the parameter OjZj)) i. 

Formula (5.7) determines the viscosity of the plasma which depenQ on col- 

lisions between particles while the tensor (5.6) characterizes the effect 

of the finite magnitude of the Larmcr radius of ions. The system of equa- 

tions (5.2) to (5.5) must still be supplemented by an equation of state of 

the electron gas. 

In the derivation of (5.3) Ohm's law is used in the form [9] 

E=- k{vxH-&[Vpj+p$ + div(x+&)]} (5.8) 
3 

The term with div n leads to insignificant corrections [5], the inertial 

term for the condition Oj> 101 is alsqsmall. In Equation (5.3) only the 

pressure term IS taken into account (Pi N pUj2Wj2v p***-J?pjt / rs, which 

is comparable to r#Oj v*). 

We note that in arbitrary curvilinear orthogonal coordinates X1, X2and Xs 

following Formulas are appropriate [lo] 

Here h: is the Lame coefficient, u, are the orthogonal projections of 

velocity. 

We will examine the stability 0; the equilibrium state described in sec- 

tion 2 with the additional assumptions that the temperature of ions and 

electrons is homogeneous over the cross section of the plasma string and 

that the length of an element of periodicity 21 is much greater than the 

characteristic diameter of the plasma string 2r,. 

For condition 8lXp <Hz we obtain (1.10) as a first approximation from 

(5.2). This equation is satisfied if the magnetic field remains unperturbed. 

Exactly such perturbations are the most dangerous ones and can lead to flu- 

ted instabilities. From linearized Equation (5.3) for H* = 0 we obtain 
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(5.10) 

Here X, Y and Z are determined by Formulas (2.5). Writing Equation (5.5) 
for perturbed values and taking into account (5.10) we find 

If the order of the function Z($,X) is the same as for v = 0, then the 

following will hold 

alnJ x 1 az QX - - IF-b’=X- _ 
w WQ 

i.e. the perturbation of ion temperature is small and dlv 5 is close to zero. 

With an accuracy to corrections of the order ro2/12 we obtain 

JGd$, &* __Pjnj' 

nj 
Consequently, for perturbations which do not distort the magnetic field 

and for the condition rc2 < I?~, we obtain again Equatlons(2.8) which also 

which also turn out to be applicable even for v { 0. Substantially new ef- 

fects can only be expected because the additional term div (?e $ #)enters 

into the equations of motion. 

Due to the fact that the ionic temperature remains unperturbed in the 

first approximation and the energy exchange between electrons takes place 

faster than between ions, the perturbation of temperature T, + Te will be 

insignificant and p* will be proportional to p*. This means that Equation 

(1.4) is applicable for y = 1, otherwise the dependence on y is not evident 

in the examined approximation (see Equation (3.3) section 3). 

Thus the basic Equations take the form (1.16) and (1.17) to which terms 

containing div (.x+ +)* must be added and Into which Equation (2.8) must be 

substituted. From Formulas (5.9) we flnd 

; (WI1 *--Wwz2*)~i~ ;!!!!?-‘I ( (11) Q 1 
209 &2X 

VV1s* = - ))1. 
( 

n1"X 

dip 
2 - i-7 1 

1;V1,*_wW2s*- $z_" 
roll1 

w11* + W22” - w33* - g , 
ovpx’ (div 7c)X* ----- lrglf 

(div z)+* = z [i$ [p (4$2 !$- + mzx)] - m*p (2 $ - $)} 

(div TC)+* = F{&[p (211 $- - x)j - qp (d$ + ‘$)) 
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Here for’ an order of magnitude estimate of the function ,7($,x) the equa- 

tion was utilized which is obtained from the Z-th component of Equation of 

motion (5.2); for this purpose it was assumed that the parameter WT, Is of 

the order of one. For condition lU~jre'/l'i-<$ components (tliv ?F~),J,* and 

(div xs)? * are small and instead of (1.17) the following holds: 

p-r . [i” II \dlv r (0”pg - dim*) j + v(ypdivg-+g-vp).rot $ Ids = 0 

From this we obtain the equation for X(C) (terms containing 2($,x) donot 

enter into this equation for a first approximation) 

(5.12) 

=-(~lsi-‘s y&d 
-1 

Equation (5.12) can be written in the form 

( a?*- 2movH *){l+)(qp-gJ -q x}- 

- 2movH+2p f$$- g + m29 (Q ‘& + d!$!_ !%) x = 0 (5.13) 

(vii- cTj,/2e= const) 

For a plasma string In vacuum the boundary condition can be obtained by 

Integrating (5.12), however it Is necessary to take now into account that in 

the layer $, - 6 \($ <$,only the derivative dp/d$ can change sharply but 

not c(9). The region In which c($)changes sharply must be related to the 

Internal region. The boundary condition is written in the form 

(& - _x_\ = 0 (5.14) 

For perturbations 

condition (5.14) for 

remain unstable also 

slon was obtained In 

was examined 

\’ d’i’ z /IL=+.---s \ I 

with m= 1 solution (3.5) satisfies Equation (5.12)and 

any arbitrary P (I). Consequently, these perturbations 

for large values of Larmor radii of ions. This conclu- 

[4] in which the specific c&se of density distribution 
. 

P= sp = PO/+6 , PO, PO, h = const (5.15) 

Let us examine the problem of stability for the distribution (5.15). 

Solution (5.13) is presented by means of degenerate hypergeometric function 

X = con& -g’/zm F (A, m + 1, 1Lg) (5.56) 

A=?+ 
n17OpQ - movHh 

02 + 2movHh (m>O) 

It will be required that for large values of X$ the function X($) be boun- 

ded. This condition leads, as was shown In [ll], approximately to the same 
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equality which is the prerequisite for non-exponential growth of perturba- 

tions for large X$. We obtain A s - n, for E = 0, 1, 2, . . . or 

0 

-;rt- 
=--VYHh 1- 

( 

The stability condition for the most dangerous perturbations with n = 0 

will be 

(5.18) 

Formulas (5.1'7) and (5.18) are in qualitative agreement with approximate 

calculations in [4]. The parameter x in these calculations can be represen- 

ted by the quantity &, which characterizes the diameterbf the plasma string 

(V, - 1). The quantities vH = cTj / 2e = const and p / p = con&,. 

In conclusion, we will examine the stability with respect to slowly in- 

creasing instabilities which were investigated in section 4. Reducing Equa- 

tion (5.13) to the form (4.5) we see that instead of the term f/u? which 

characterizes the behavior of solutions for w -+ 0, there is now D(JI) where 

D(q) = 
Q dp 

qp (09 - 2movHd In p / dq) d@ 

It is assumed here that utvH/$~, in accordance with condition (5.1) is of 

the order of w2 and w" is so small that 0212 < p / p. 

Instead of (4.7) we obtain dispersion Equation 
I. 

m 
s 
l/u (4) @ = W> q>ImI (m # 0) (5.19) 

0 
For an order of magnitude estimate we take the expression under the 

integral sign outside of the integral for some intermediate value of $ 

Then we obtain 

(5.20) 

, 
Here dp/d$ is negative, therefore for v = 0 Formula (5.20) describes an 

unstable sdlution. 

The criterion for stability will be 

( vzz d’np 1 2> tloaQ dp 
7’ _n'PatClpW' q>tmt (m#O) (5.21) 

Since, as far as the order of magnitude is concerned, the increment of 

slowly Increasing instabilities is P times(q> $)smaller than the lncre- 

ment of instability given by Formula (3.6), the stability criterion (5.21) 

is less severe than (5.18). For the examined perturbations stabilization 

of instabilities with m= 1 is also possible. 
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